HSSC-(P-II)- A-2024

Paper Code 8 1 9 5

# Mathematics (Objective)

(For All Sessions)
(GROUP-I)

Time: 30 Minutes

Marks: 20

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

| 1.1 | Midpoint of $A(2,0)$ , $B(0,2)$ is:                                                            | (A)   | (0, 2)                                                    | (B) | (2,0)                                                            | (C)     | (2, 2)                                                           | (D)   | (1, 1)                                                      |
|-----|------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------|-----|------------------------------------------------------------------|---------|------------------------------------------------------------------|-------|-------------------------------------------------------------|
| 2.  | The point satisfies $x + 2y < 6$                                                               | (A)   | (4, 1)                                                    | (B) | (3, 1)                                                           | (C)     | (1,3)                                                            | (D)   | (1, 4)                                                      |
| 3.  | In a conic, the ratio of the distance from a fixed point to the distance from a fixed line is: | (A)   | Focus                                                     | (B) | Vertex                                                           | (C)     | Ecentricity                                                      | (D)   | Centre                                                      |
| 4.  | Standard equation of Parabola is:                                                              | (A)   | $y^2 = 4ax$                                               | (B) | $x^2 + y^2 = a^2$                                                | (C)     | $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$                          | (D)   | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$                     |
| 5.  | Equation of tangent to circle $x^2 + y^2 = a^2$ at $P(x_1, y_1)$ is:                           | (A)   | $xx_1 + yy_1 = a^2$                                       | (8) | $xx_1 - yy_1 = a^2$                                              | (C)     | $xy_1 + yx_1 = a^2$                                              | (D)   | $xy_1 - yx_1 = a^2$                                         |
| 6.  | The volume of parallelopiped =                                                                 | (A)   | $(\underline{u} \times \underline{v}).\underline{\omega}$ | (B) | $(\underline{u} \times \underline{v}) \times \underline{\omega}$ | (C)     | $\underline{u} \times (\underline{v} \times \underline{\omega})$ | (D)   | $\underline{u} \times (\underline{u} \times \underline{v})$ |
| 7.  | The non-zero vectors are perpendicular when:                                                   | (A)   | $\underline{u}.\underline{v}=1$                           | (B) | $ \underline{u},\underline{v} =1$                                | (C)     | $\underline{u}.\underline{v}=0$                                  | (D)   | $\underline{u}.\underline{v} \neq 0$                        |
| 8.  | <u>j</u> × <u>k</u> =                                                                          | (A)   | <u>i</u>                                                  | (B) | <u>-i</u>                                                        | (C)     | 0                                                                | (D) * | <u>k</u>                                                    |
| 9.  | The range of $f(x) = 2 + \sqrt{x-1}$ is:                                                       | (A)   | [1,+∞)                                                    | (B) | [2,+∞)                                                           | (C)     | (1, +∞)                                                          | (D)   | (2,+∞)                                                      |
| 10. | The perimeter P of square as a function of its area A:                                         | (A)   | 3√A                                                       | (B) | 4√A                                                              | (C)     | $\sqrt{A}$                                                       | (D)   | $2\sqrt{A}$                                                 |
| 11. | If $f(x) = \frac{1}{x^2}$ then $\hat{f}(3) = $                                                 | (A)   | $\frac{1}{9}$                                             | (B) | $\frac{-2}{3}$                                                   | (0)     | $\frac{-2}{27}$                                                  | (D)   | 1<br>27                                                     |
| 12. | If $f(c) = 0 \& f''(c) > 0$ then C is point of:                                                | (A)   | Maxima                                                    | (B) | Minima                                                           | (C)     | Inflection                                                       | (D)   | Constant                                                    |
| 13. | $\frac{d}{dx}(log_ax) = \underline{\hspace{1cm}}.$                                             | . (A) | $\frac{1}{xlna}$                                          | (B) | $\frac{\ln a}{x}$                                                | (C) .** | $\frac{1}{x}$                                                    | (D)   | $\frac{-1}{xlna}$                                           |
| 14. | $\frac{d}{dx}(\cot ax) = \underline{\hspace{1cm}}.$                                            | (A)   | cosec <sup>2</sup> ax                                     | (B) | a cosec²ax                                                       | (C)     | −a cosec²ax                                                      | (D)   | -a cosec ax                                                 |
| 15. | $\int \frac{1}{\sqrt{1-x^2}}  dx = \underline{\qquad}.$                                        | 1A)   | $Sin^{-1}x + c$                                           | (B) | $Cos^{-1}x + c$                                                  | (C)     | $-Sin^{-1}x + c$                                                 | (D)   | $-Cos^{-1}x + c$                                            |
| 16. | $\int \frac{1}{x} dx = \underline{\qquad}.$                                                    | (A)   | lnx + c                                                   | (B) | $\frac{1}{x^2} + c$                                              | (C)     | $-\frac{1}{x^2}+c$                                               | (D)   | $\frac{1}{x} + c$                                           |
| 17. | The solution of differential equation $\frac{dy}{dx} = -y \text{ is:}$                         | (A)   | $y = xe^{-x}$                                             | (B) | $y = ce^{-x}$                                                    | (C)     | $y = e^x$                                                        | (D)   | $y = ce^x$                                                  |
| 18. | $\int_{0}^{1} \frac{1}{1+x^2}  dx = \underline{\hspace{1cm}}.$                                 | (A)   | $\frac{\pi}{4}$                                           | (B) | $\frac{2\pi}{3}$                                                 | (C)     | $\frac{3\pi}{4}$                                                 | (D)   | π                                                           |
| 19, | x – intercept of the line $2x + 5y - 1 = 0$ is:                                                | (A)   | 2                                                         | (8) | 3                                                                | ·(C)    | $\frac{1}{2}$                                                    | (D)   | 1<br>5                                                      |
| 20. | Slope of $y - axis$ is:                                                                        | (A)   | 0                                                         | (B) | 1                                                                | (C)     | -1                                                               | (D)   | Undefined                                                   |

Roll No

to be filled in by the candidate

HSSC-(P-II)-A/2024 (For All Sessions) (GROUP-I)

Time: 2:30 hours

RWP1-24

## Mathematics (Subjective)

(GROUP-SECTION-I

#### 2. Write short answers of any eight parts from the following:

(8×2=16)

i. If 
$$f(x) = 2x + 1$$
, then find  $f \circ f(x)$ .

ii. Express the area A of a circle as a function of its circumference C.

iii. Evaluate 
$$\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$$

iv. Define continuous function.

v. Differentiate 
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 w. r. t x$$

vi. Find  $\frac{dy}{dx}$  if  $y^2 - xy - x^2 + 4 = 0$ 

vii. Differentiate 
$$x^2 sec4xw.r.tx$$

viii. Differentiate sin2xw.r.t. cos4x

ix. Find 
$$f(x)$$
 if  $f(x) = e^x(1 + lnx)$ 

x. Find  $y_2$  if  $y = ln(x^2 - 9)$ 

xi. Prove that 
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

xii. Determine the interval in which f(x) = cosx is decreasing;  $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ .

#### 3. Write short answers of any eight parts from the following:

(8:2=16)

i. Solve the differential equation  $sec^2 x tan y dx + sec^2 y tan x dy = 0$ 

ii. Find the area between x - axis and the curve  $y = x^2 + 1$  from x = 1 to x = 2

iii. Evaluate: 
$$\int_{0}^{x} x \ln x \, dx$$

iv. Evaluate the integral  $\int \frac{-2x}{\sqrt{4-x^2}} dx$ 

v. Evaluate: 
$$\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$$

vi. Evaluate the integral  $\int (a + 2x)^{3/2} dx$ 

vii. Find the approximate change in the volume of a cube if length of its each edge changes from 5 to 5.02.

viii. Show that the points A(0, 2),  $B(\sqrt{3}, -1)$  and C(0, -2) are vertices of a right triangle.

ix. Convert the equation of line 4x + 7y - 2 = 0 into normal form.

X. Fine the angle from the line with slope  $\frac{-7}{3}$  to the line with slope  $\frac{5}{2}$ .

xi. Find the pair of lines represented by  $3x^2 + 7xy + 2y^2 = 0$ .

xii. Find the point of intersection of lines 3x + y + 12 = 0 and x + 2y - 1 = 0.

### 4. Write short answers of any nine parts from the following:

(9x2=18)

i. Define feasible region.

ii. Graph the solution set of in-equality  $3x + 7y \ge 21$ .

iii. Find equation of circle with ends of diameter at (-3, 2) and (5, -6).

iv. Write down equation of tangent to the circle  $x^2 + y^2 = 25$  at  $(5 \cos\theta, 5 \sin\theta)$ 

v. Find focus and vertex of Parabola  $x^2 = 4(y - 1)$  vi. Find equation of ellipse with data Foci ( $\pm 3$ , 0) Minor axis of length 10.

vii. Find center of hyperbola $x^2 - y^2 + 8x - 2y - 10 = 0$ 





- Find equation of Normal to  $y^2 = 4ax$  at  $(at^2, 2at)$ . viii.
- ix. Find the sum of vector  $\overrightarrow{AB}$  and  $\overrightarrow{CD}$  given four points A(1,-1)B(2,0)C(-1,3) and D(-2,2)
- Find  $\propto$ , so that  $|\propto \underline{i} + (\propto +1)j + 2\underline{k}|=3$
- xii. If  $\underline{v}$  is a vector for which  $\underline{v}$ .  $\underline{i} = 0\underline{v}$ .  $\underline{j} = 0\underline{v}$ .  $\underline{k} = 0$ , find  $\underline{v}$
- Find the area of triangle determined by the points P(0,0,0) Q(2,3,2) and R(-1,1,4)XII.
- xiii. Find the value of  $2\hat{\imath} \times 2\hat{\jmath}$ .  $\hat{k}$

#### SECTION-II

#### Note Attempt any three questions. Each question carries equal marks:

(10x3=30)

(05)

- Find the values of m and n, so that given function f 5. (a) is continuous at x = 3 when

Find  $\frac{dy}{dx}$ , when  $x = \frac{a(1-t^2)}{1+t^2}$ ,  $y = \frac{2bt}{1+t^2}$ 

(05)

If  $y = (\cos^{-1}x)^2$ , prove that  $(1 - x^2)y_2 - xy_1 - 2 = 0$ .

(05)

(b) Evaluate the integral  $\int e^x \sin x \cos x \, dx$ . (05)

Solve the differential equation  $y - x \frac{dy}{dx} = 3\left(1 + x \frac{dy}{dx}\right)$ . 7. (a)

(05)

(05)

(b) Graph the feasible region and corner points of the inequalities

(05)

- $x + 4y \le 12; x + 2y \le 10;$  $2x + y \le 10;$
- Show that the circles:  $x^2 + y^2 + 2x 8 = 0$ ;  $x^2 + y^2 6x + 6y 46 = 0$  touch internally. (05)
- Using vector method, for any triangle ABC, prove that:  $c^2 = a^2 + b^2 2ab \cos C$ . (b) (05)
- 9. (a) Find the focus, vertex and directrix of the Parabola;  $x^2 = 4(y-1)$ 
  - Find the lines represented by  $3x^2 + 7xy + 2y^2 = 0$  and also find measure of the angle between them. (05)

618-12-A