Paper Code Number: 4193 INTERMEDI		2024 (1 st -A) IATE PART-II (1	12 th Class)	Roll No: MTN-1-24		
	THEMATICS PA		OUP-I	Z Class) X		
	E ALLOWED: 30			CTIVE MA	XIMUM MARK	KS: 20
Q.No	correct, fill tha	choices for each ob t bubble in front o	jective type question f that question nun	on as A, B, C and I ber, on bubble sh	D. The choice whice eet. Use marker o	h you think is
7 11			more bubbles will		k in that question.	D
3.#	QUEST Length of latus rac		A 2	B 2	1,2	
1		ctum of empse	$\frac{2a^2}{b}$	$\frac{a^2}{b}$	$\frac{b^2}{a}$	$\frac{2b^2}{a}$
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is:		U		, and	u
2	Equation of tanger $x^2 + y^2 = a^2$ at $(x^2 + y^2) = a^2$		$xx_1 + yy_1 = a^2$	$xx_1 - yy_1 = a^2$	$xy_1 + x_1y = a^2$	$xy_1 - x_1y = a$
3	If α , β , γ are dire		2		2	0
	of a vector then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \beta$	$os^2 \gamma = ?$	3	1	2	U
4	For what value of					1000
	$5\hat{i} - \hat{j} + \hat{k}$ and α		-3.	15	-15	3
	parallel to each oth					
5	If any two vectors product are equal		1		2	0
6	$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{2n} = ?$		e ⁻¹	2	e ²	e^3
7	The function $f(x)$	$=\frac{x^2+1}{x-1}$ is	x = 2	x = 0	x = -1	x = 1
	discontinuous at:	0000			4 1	
8	Derivative of x^0 we respect to 'x' is:	vith	0			С
9	$\frac{d}{dx}[fog(x)] = ?$		f'[g(x)]	A Section	f'[g(x)]g'(x)	f[g(x)]g'(x)
10			Dangent of	Slope of line	Slope of	Slope of
10	Geometrically $\frac{dy}{dx}$	means:	slope	or the	x - axis	tangent
11	$\lim_{h\to 0} \frac{f(a+h)-f}{h}$	$\frac{r(a)}{a} = ?$	f'(a)	f'(x)	f'(a+h)	f(a)
12	$\int \frac{f'(x)}{f(x)} dx = ?$		ln x +o	$\ell n f(x) + c$	$\ell n f'(x) + c$	f(x)
13	$\int (ax+b)^n dx$ whe	re n≠ -1 is:	$(ax + b)^{n+1}$	$(ax+b)^{n+1}$	$(ax+b)^{n+1}$	$(ax+b)^{n+1}$
	J(ax + b) ax whe	ic #4	$\frac{(constant)}{n+1}+c$	$\frac{(ax+b)^{n+1}}{a}+c$	$\frac{(n+1)}{a(n+1)}$ +c	n +
14	$\int 2^x dx = ?$		$x2^{x-1} + c$	$2^{x} \ln 2 + c$	$\frac{2^{x+1}}{2} + c$	$\frac{2^x}{\ell n2} + c$
	- P				x+1	ln2
15	When expression involve in integral substitute:	- AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLU	$x = a \sin \theta$	$x = a \sec \theta$	$x = a \tan \theta$	$x = \sin \theta$
16	All points (x, y) v lies in quadrant:	with $x < 0, y < 0$	I	II	III	IV.
17	Slope of line passi		$x_2 - x_1$	$y_2 + y_1$	$y_2 - x_2$	$y_2 - y_1$
	points $A(x_1, y_1)$ and $B(x_2, y_2)$ is:		$\frac{2}{y_2 - y_1}$	$\frac{y_2 + y_1}{x_2 + x_1}$	$\frac{y_1-x_1}{y_1-x_1}$	x_2-x_1
18	Equation of vertic points $(3, -5)$ is:	al line through	y=-5	y=5	x=3	x=-3
19	Which of the follo		(1, 1)	(3, 0)	(-2, 1)	(0, 0)
20	Radius of circle x		5	25	$\sqrt{5}$	$\frac{5}{2}$

	ERMEDIATE PART-II (12th Class)		2	024	(1 st -A)	Roll No:		
	THEMATICS PAPER-II GROUP-I E ALLOWED: 2.30 Hours		SU	BJE	CTIV	Æ	MAXIMUM MARKS: 80		
	E: Write same question number and its par	ts nu	mber	on ar	swer l	oook, a	as given in the question paper.		
		SEC	TION-	<u>I</u>	MT	N	1-24 8×2=16		
(i)	ttempt any eight parts.	×-	3 (ii)	Deter	mine w	whether $f(x) = \sin x + \cos x$ is e		
	Discuss continuity of $g(x) = \frac{x^2 - 9}{x - 3}$, $x \ne 3$ at	x			or odd	funct	ion.		
(iii)	Define Constant Function. Give one example	e also), when $f(x) = \frac{2x+1}{x-1}$ where $x > $		
(v)	Differentiate $\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$ w.r.t 'x'.		(vi)	Find -	$\frac{dy}{dx}$, if	$y^2 + x^2 - 4x = 5$		
(vii)	Find derivative of $x^2 - \frac{1}{x^2}$ w.r.t. x^4		(vi	ii)	Prove	that -	$\frac{d}{dx}[\cot^{-1}x] = -\frac{1}{1+x^2}, \ x \in R$		
(ix)	Determine the values of x for which f defin	ned a	s (x)		Define Taylor series expansion of function f				
	$f(x) = x^2 + 2x - 3$ is increasing.				at $x =$	a	18)		
(xi)	Find y_2 , if $y = \ln\left(\frac{2x+3}{3x+2}\right)$		(xii)		Find $\frac{dy}{dx}$, if $y = xe^{\sin x}$				
	tempt any eight parts.						8 × 2 = 16		
(i)	Find dy if $y=x^2+2x$ and x changes from 2	2	(ii)	Ev	aluate	5-	dx T		
(:::\	to 1.8.	-	(iv)			**(*			
(iii)	Evaluate $\int \cos 3x \sin 2x dx$		(iv)	Eva	luate	sec :	x ax		
(v)	Evaluate $\int x^2 \ln x \ dx$		(vi)	Eva	luate	$\int_{0}^{\pi/4} \sec x$	$(\sec x + \tan x) dx$		
(vii)	Solve the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$		(viii)		Show that the points $A(3,1)$, $B(-2,-3)$ and $C(2,2)$ are vertices of an isosceles triangle.				
(ix)	Find slope and inclination of the line joining the points $(3, -2)$ and $(2, 7)$.								
(x)	Find an equation of the line through (-5, -3								
(xi)	Convert the equation $15y-8x+3=0$ into normal form.								
(xii)	Find the angle from the line with slope $\frac{-7}{3}$ to	o the	line wi	th slo	ope $\frac{5}{2}$				
4. At	tempt any nine parts.						9 x 2 = 18		
(i)	What are Decision Variables?					graph	of inequality $2x + 3y \le 12$		
(iii)	Find the centre and radius of the circle $x^2 + y^2 - 6x + 4y + 13 = 0$								
(iv)	Check the position of the point (5, 6) with re	_			$ex^2 +$	$y^2 = 3$	81		
(v)	Find the focus and directix of the parabola x^2								
(vi)	Write an equation of the ellipse with centre (0, 0)	focus (0, –	3), ve	rtex (0	, 4).		
(vii)	Find foci and eccentricity of $x^2 - y^2 = 9$								
(viii)	Find the length of the tangent drawn from the	poin	t P(-5	5, 10)	to the	circle	$5x^2 + 5y^2 + 14x + 12y - 10 = 0$		
(ix)	Write the direction cosines of $\underline{v} = 2\underline{i} + 3\underline{j} + 4$	4 <u>k</u> .							
(x)	Find a vector whose magnitude is 4 and paral	lel to	$2\underline{i}-3$	j + 6	<u>k</u>				
(xi)	Find $\underline{b} \times \underline{a}$ where $\underline{a} = 3\underline{i} - 2\underline{j} + \underline{k}$, $\underline{b} =$	<u>i</u> +	j						
(xii)	Find the value of $3\underline{i} \cdot \underline{k} \times \underline{i}$ (xiii) If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \mathbf{SECTION-II}$								
OTE		EC.	I TOIN-I	4			$3 \times 10 = 30$		
i.(a)	Show that $\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$ (b)) [f x = a	cos ³	θ , $y=$	b sin	$\frac{\partial}{\partial \theta}$, show that: $a\frac{dy}{dx} + b \tan \theta = 0$		
5.(a)	If $y = (\cos^{-1} x)^2$, prove that $(1-x^2)y_2 - xy_1 - 2 = 0$) s	how th	at s	$a^2 - 3$	$\frac{1}{x^2} dx$	$= \frac{a^2}{2} \sin^{-1} \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c$		
7.(a)) N	laximiz	e f	(x, v)	=2x	+ 5y subject to the constraints		
(-)	Evaluate $\int_{0}^{\sqrt{3}} \frac{x^3 + 9x + 1}{x^2 + 9} dx$ (b)								
.(a)	Write an equation of the circle that passes through $A(-7, 7)$, $B(5, -1)$, $C(10, 0)$								
(b)	Prove that in any triangle ABC $a = b \cos C + c \cos B$								
.(a)	Find the focus, vertex and directix of the para				3y+4	= 0			
	The midpoints of the sides of a triangle are (1				1000				
	r'ind coordinates of the vertices of the triangle								