MATHEMATICS PAPER-II M TN -4/-2/ TIME ALLOWED: 30 Minutes				
GROUP-I MAXIMUM MARKS: 20				
Note: You have four choices for each objective type question as A, B, C and D. The choice which you				
think is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that				
question. No credit will be awarded in case BUBBLES are not filled. Do not solve question on				
this sheet of OBJECTIVE PAPER. MTAI -C-T-2 1				
Q.No.1 (1) When the expression $\sqrt{a^2 - x^2}$ involves in integration substitute, is:				
(1)				(D) 0
	(A) $x = a \sin \theta$	(B) $a \sec \theta$	(C) $a \tan \theta$	(D) $a = \sin \theta$
(2)	$\int_{0}^{3} 1 dx =$	$(A) \frac{2}{}$	(B) $\frac{-2}{\pi}$ (C)	$\frac{-\pi}{}$ (D) $\frac{\pi}{}$
(2)	$\int_{0}^{1} \frac{1}{\sqrt{9 - x^2}} dx = \underline{\hspace{1cm}}$	π	π	2 2
(3)	Which of the following is n	ot a solution of the system of	finequalities	
	$x + 2y \le 8, 2x - 3y \le 6$	$, 2x + y \ge 2 \qquad x \ge 0,$	$y \ge 0$	(D) (2 0)
	(A) (1, 0)	(B) (8, 0)	(C) (0, 4)	(D) (3, 0)
(4)		ne coordinates of the point (-	-6, 9) are changed into	(-3, 7),
	find the point through whi $(A) (-3, 2)$		(C) $(7, -3)$	(D) (-9, 6)
(5)		line passing through (-5.3	is:	
(5)		(B) -5x + 3y = 0	(C) $3x - 5y = 0$	(D) $y - 3 = 0$
(6)		and $(k, 7)$ has a slope k ,	the values of k is:	
. ,		(B), 3 and $= 2$	(C) $2, -3$	(D) -1 , -2
(7)	The focus of the parabola	$y^2 = 4ax \text{ is:}$		m) (0)
	(A) $(a, 0)$	(B) $(0, a)$	(C) $(-a, 0)$	(D) $(0, -a)$
(8)	The eccentricity of $\frac{y^2}{4} - x$	$r^2 = 1$ equals: (A)	(C) $(-a, 0)$ $\frac{2}{5}$ (B) $\frac{2}{\sqrt{5}}$ (C)	$-\frac{\sqrt{5}}{2}$ (D) $\frac{\sqrt{5}}{2}$
(0)			Y	2 2
(9)		ed by cutting a right circular	cone by: (C) A plane	(D) A curve
(10)	(A) Sphere	(B) A line zero vectors then $a \times b =$	(C) A plane	(D) II cur
(10)	If \underline{a} and \underline{b} are two non- (A) $-\underline{b} \times \underline{a}$	(B) $a \cdot b$	$(C) - \underline{a} \times -\underline{b}$	(D) $\underline{b} \times \underline{a}$
			(A) π (B) $\frac{\pi}{2}$	
(11)	Angle between the vector	is $\underline{i} + \underline{j}$, $\underline{i} - \underline{j}$ is:	(A) π (B) $\frac{1}{2}$	4
(12)		_		
	(A) $\hat{a} \cdot \hat{b}$	(B) $\underline{a} - \underline{b}$	(C) $\underline{a} \cdot \hat{b}$	(D) $\hat{a} \cdot \underline{b}$
(13)	If $f(x) = \sqrt{x+4}$ then (A) $\sqrt{x^2+8}$	$f(x^2 + 4)$ is equal to:		
	(A) $\sqrt{x^2 + 8}$	(B) $\sqrt{x^2 - 8}$	(C) $\sqrt{x-8}$	(D) $x^2 - 8$
	2+	3x.		
(14) The function $f(x) = \frac{2+3x}{2x}$ is not continuous at: (A) $x = -3$ (B) $x = -\frac{2}{3}$ (C) $x = 1$ (D) $x = 0$				
(15)	$\lim_{x \to a} \frac{f(x) - f(a)}{x} = 0$	(A) f'(x)	(B) $f'(a)$ (C) f	f'(0) (D) $f'(x-a)$
(13)	$x \to a$ $x - a$			
(16)	$f(x) = x^{\frac{2}{3}}$, then $f'(8)$) =	(A) $\frac{1}{2}$ (B) $\frac{2}{3}$	(C) $\frac{1}{2}$ (D) 3
()			2 3	
(17)	The derivative of $\frac{x^3 + 2x}{x^3}$	equals:	(A) $\frac{2}{x^2}$ (B) $\frac{-2}{x^2}$	(C) $\frac{1}{2r^2}$ (D) $\frac{-1}{2r^2}$
	λ		x^{-} x^{-}	2x $2x$
(18)	If $f(x) = \tan^{-1} x$, then	$f'(\cot x)$ is equal to:		2
	(A) $\frac{1}{1+x^2}$	(B) $\sin^2 x$	(C) $\cos^2 x$	(D) sex^2x
(10)	1 + 1			
(19)	$f(x+\delta x) = \underline{\hspace{1cm}}$ (A) $f'(x)dx$	(B) $f(x) - f'(x)dx$	(C) $f(x) + f'(x) d$	dx (D) $f(x)dx$
	, , , , ,			
(20)	$\int \frac{a}{x\sqrt{x^2 - 1}} dx = \underline{\hspace{1cm}}$			
	•		(0)	(D) $\frac{1}{a} \sec^{-1} x + c$
	(A) $a \tan^{-1} x$	$(B) - a \cos ec^{-1}x + c$	(C) $-a \sec^{-1} x + c$	$(D) - \sec x + c$

.....

TIME ALLOWED: 2.30 Hours MAXIMUM MARKS: 80

GROUP-I NOTE: Write same question number and its part number on answer book, M M -21-21 as given in the question paper.

2. Attempt any eight parts. $8 \times 2 = 16$

- Determine whether the function $f(x) = \sin x + \cos x$ is even or odd. (i)
- With out finding the inverse, state domain and range of f^{-1} where $f(x) = \frac{x-1}{x-4}$ (ii)
- $\lim_{x \to 2} \frac{x^3 8}{x^2 + x 6}$ by using algebraic techniques. Evaluate the limit (iii)
- $\lim_{x\to 0} (1+2x^2)^{\frac{1}{x^2}}$ in terms of e. Express the Limit (iv)
- Find the derivative of $(x + 4)^{\frac{1}{3}}$ by definition. (v)
- Differentiate $x^2 \frac{1}{x^2}$ w.r.t x^4 . (vi)
- If $y = \ln (x + \sqrt{x^2 + 1})$ then find $\frac{dy}{dx}$ (vii)
- If $y = x^2 \cdot e^{-x}$ then find y_2
- If $x = 1 t^2$ and $y = 3t^2 2t^3$ then find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ (ix)
- If $f(x) = 4 x^2$, $x \in (-2, 2)$ then find interval in which f(x) is increasing or decreasing. (x)
- Prove that $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ (xi)
- If $y = \sin 3x$ then find y_4 (xii)

Attempt any eight parts. 3.

 $8 \times 2 = 16$

- Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ if $x^2 + 2y^2 = 16$ (i)
- Evaluate $\int \cos 3x \sin 2x \, dx$ (ii)
- (iii)
- Evaluate $\int x \, \ell nx \, dx$ (iv)
- Evaluate $\int \frac{(a-b)x}{(x-a)(x-b)} dx$, a > b
- Evaluate $\int \frac{dx}{x^2 + 9}$ (vi)
- Solve the differential equation y dx + x dy = 0(vii)
- Evaluate $|\sec x| dx$ (viii)
- Find K so that the line joining A(7,3), B(K,-6) and the line joining C(-4,5), D(-6,4)(ix) are parallel.
- Find whether the given point P(5, 8) lies above or below the line 2x 3y + 6 = 0(x)
- Determine value of P such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and (xi) 3x + Py + 8 = 0 meet at a point.
- Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$ (xii)

 $9 \times 2 = 18$

- Graph the solution set of linear inequality in xy-plane $3x 2y \ge 6$ (i)
- Find the equation of a circle with ends of a diameter at (-3, 2) and (5, -6)(ii)
- Find the centre and radius of a circle $4x^2 + 4y^2 8x + 12y 25 = 0$ (iii)
- Write down the equation of normal to the circle $x^2 + y^2 = 25$ at (4, 3)(iv)
- Find the vertex and directrix of $x^2 = 4(y-1)$ (v)
- Write the equation of parabola with focus (-3, 1) and directrix x 2y 3 = 0(vi)
- Find the equation of hyperbola with Foci $(\pm 5, 0)$ and vertex is (3, 0)(vii)
- Find the magnitude of vector $\underline{u} = \underline{i} + \underline{j}$ (viii)
- Find a unit vector in the direction of $\underline{v} = \underline{i} + 2\underline{j} \underline{k}$ (ix)
- Find the direction cosines of $\underline{v} = 3\underline{i} \underline{j} + 2\underline{k}$ (x)
- If $\underline{u} = [2, -3, 1]$, $\underline{v} = [2, 4, 1]$ find the cosine of angle θ between \underline{u} and \underline{v} (xi)
- If $\underline{a} \times \underline{b} = 0$ and $\underline{a} \cdot \underline{b} = 0$, what conclusion can be drawn about \underline{a} or \underline{b} ? (xii)
- Find α so that $\underline{i} \underline{j} + \underline{k}$, $\underline{i} 2\underline{j} 3\underline{k}$ and $3\underline{i} \alpha \underline{j} + 5\underline{k}$ are coplanar. (xiii)

SECTION-II

NOTE: Attempt any three questions.

$$3 \times 10 = 30$$

- If $f(x) = \begin{cases} \frac{\sqrt{2x+5} \sqrt{x+7}}{x-2}, & x \neq 2 \\ K, & x = 2 \end{cases}$ Find the value of K so that f is continuous at x = 25.(a)
- If $x = a\cos^3\theta$, $y = b\sin^3\theta$, show that $a\frac{dy}{dx} + b\tan\theta = 0$ (b)
- Evaluate the integral 6.(a)
 - Find the condition that the lines $y = m_1x + c_1$, $y = m_2x + c_2$, $y = m_3x + c_3$ are concurrent. (b)
- Evaluate $\int_{-\cos^2 x}^{\frac{\pi}{4}} \frac{\sin x 1}{\cos^2 x} dx$ 7. (a)
 - Maximize f(x, y) = 2x + 5y subject to constraints $2y x \le 8$, $x y \le 4$, $x \ge 0$, $y \ge 0$ (b)
- Write equations of two tangents from (2, 3) to the circle $x^2 + y^2 = 9$ 8. (a)
 - (b) By using vectors prove that $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$
- If $y = (\cos^{-1} x)^2$, prove that $(1 x^2)y_2 xy_1 2 = 0$ 9.(a)
- Show that an equation of parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and directrix (b) $x\cos\alpha + y\sin\alpha + a = 0$ is $(x\sin\alpha - y\cos\alpha)^2 = 4a(x\cos\alpha + y\sin\alpha)$