Roll	No
NOIL	TAG

(To be filled in by the candidate)

(Academic Sessions 2020 - 2022 to 2022 - 2024)

MATHEMATICS

224-1st Annual-(INTER PART – II)

Q.PAPER – II (Objective Type)

GROUP-I

Time Allowed: 30 Minutes

Maximum Marks: 20

PAPER CODE = 8195

LHR-1-24

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

two or more circles will result in zero mark in that question.			
1-1	If $f(x) = 3 - \sqrt{x}$	\bar{x} then $f'(1)$ is equal to	:
	(4) 1	(D) 0	(C)

- (D) 1

$$\begin{array}{c|c}
2 & \frac{\pi}{4} \\
4 \int_{0}^{\pi} \sin 2x \, dx = :
\end{array}$$

$$\lim_{x \to 0} \frac{\sin ax}{\sin bx} = 1$$

$$4 \qquad \int \ell nx \, dx = :$$

- (D) $x(\ln x 1) + c$

Let
$$f(x) = \sqrt{1 - x^2}$$
 in R then domain of f is:

- (A) Real numbers
- (B) $|x| \le 1$
- (C) Negative real numbers
- (D) Integers

6 If
$$\int x e^{x^2} dx = k e^{x^2}$$
 then $k =$:

- (C) $\frac{x}{3}$
- (D) $\frac{x}{2}$

7 If
$$f(x)$$
 has second derivative at c such that $f'(c) = 0$ and $f''(c) < 0$ then c is point of:

- (A) Maxima
- (B) Minima
- (C) Point of inflection
 - (D) Origin

If
$$y = \cot x$$
, then $\frac{dy}{dx}$ is given by :

- (A) $\cos ec^2x$
- (B) $-\cos ec^2x$
- (C) $\tan x$
- (D) $-\cos ec x \cot x$

$$\int \frac{1}{x^2 + a^2} dx =$$

- (A) $\tan^{-1} \frac{x}{a} + c$ (B) $\frac{1}{a} \tan^{-1} \frac{x}{a} + c$ (C) $\frac{a}{x} \tan^{-1} \frac{x}{a} + c$ (D) $\frac{1}{a} \tan^{-1} \frac{a}{x} + c$

(Turn Over)

1-10	For $y = \log_e 5x$, $\frac{dy}{dx} = :$
	(A) $\frac{1}{x}$ (B) 5 (C) $\frac{1}{5x}$ (D) 1
11	The straight line $y = mx + c$ is tangent to the parabola $y^2 = 4ax$ if:
	(A) $c = \frac{a}{m}$ (B) $c = \frac{m}{a}$ (C) $c = \frac{a^2}{m^2}$ (D) $c = am$
12	y-coordinate of any point on x-axis is:
	(A) 0 (B) x (C) 1 (D) y The volume of parallelepiped determined by $\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$, $\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$,
13	
	$\underline{w} = \underline{i} - 7\underline{j} - 4\underline{k} \text{ is :}$
	(A) 48 (B) 50 (C) 52 (D) 55
14	The distance between the centres of the circles $x^2 + y^2 + 2x + 2y + z = 0$ and
	$x^2 + y^2 - 4x - 6y - 3 = 0$ is :
	(A) 1 (B) 4 (C) 5 (D) 15 If $\underline{a} + \underline{b} + \underline{c} = 0$ then which one is correct:
15	
	(A) $\underline{a} \times \underline{b} \times \underline{c} = 0$ (B) $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c}$
	(C) $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ (D) $\underline{a} = \underline{b} = \underline{c}$
16	The x-intercept of the line $2x+3y-1=0$ is:
	(A) 2 (B) (C) $\frac{1}{3}$ (D) $\frac{1}{2}$
17	The graph of $2x - 3y \le 6$ is:
	(A) On the origin side (B) Not on the origin side
	(C) Not decided (D) Through the origin
18	The area of the triangle having \underline{a} and \underline{b} as its two sides is given by :
	$ \underline{a} \cdot \underline{b} \qquad (B) \frac{1}{2} \underline{a} \cdot \underline{b} \qquad (C) \underline{a} \times \underline{b} \qquad (D) \frac{1}{2} \underline{a} \times \underline{b} $
19	Homogeneous equation of second degree $ax^2 + 2hxy + by^2 = 0$ where a, b, h are
	not all zero, represents two imaginary lines if:
20	(A) $h^2 = ab$ (B) $h^2 > ab$ (C) $h^2 < ab$ (D) $h = ab$ The eccentricity of the ellipse $\frac{x^2}{64} + \frac{y^2}{28} = 1$ is :
	(A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\sqrt{\frac{3}{4}}$ (D) $\sqrt{\frac{4}{3}}$

- (ii) Evaluate $\int (a-2x)^{\frac{3}{2}} dx$
- (iii) Evaluate $\int \sec^{2} dx$
- (iv) Evaluate $x \ln dx$
- (v) Evaluate $\int_{1}^{x} \frac{x}{x^2 + 2} dx$
- (vi) Find the area bounded by cos function from $x = -\frac{\pi}{2}$ to $x = \frac{\pi}{2}$
- (vii) Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$
- (viii) Find h such that A(-1,h), B(3,2) and C(7,3) are collinear.
- (ix) The coordinates of a point P are (3, 2). The axes are translated through the point O'(1,3). Find the coordinates of P referred to new axes.
- (x) Find k so that the line joining A (7,3); B (k,-6) and the line joining C (-4,5); D (-6,4) are parallel.
- (xi) Find the point of intersection of the lines x-2y+1=0 and 2x-y+2=0
- (xii) Find measure of the angle between the lines represented by $9x^2 + 24xy + 16y^2 = 0$

(Turn Over)

4. Write short answers to any NINE (9) questions : 18 (i) Graph the solution set of inequality $3x-2y \ge 6$ (ii) Define feasible region. (iii) Find the equation of circle whose ends of diameter are (-3, 2) and (5, -6)(iv) Find the position of the point (5, 6) w.r.t the circle $2x^2 + 2y^2 + 12x - 8y + 1 = 0$ (v) Find the focus and vertex of parabola $y^2 = -8(x-3)$ (vi) Find the eccentricity of ellipse $x^2 + 4y^2 = 16$ (vii) Find the centre and eccentricity of the conic $\frac{y^2}{4} - x^2 = 1$ (viii) Identify the conic represented by $4x^2 - 4xy + y^2 - 6 = 0$ (ix) Find the work done by a constant force $\vec{F} = 2\hat{i} + 4\hat{j}$, if its point of application to a body moves it from A(1,1) to B(4,6) (x) Find the value of ' α ' such that $\alpha \underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} - 2\underline{k}$ are coplanar. (xi) If $\vec{u} = 2i - j + k$ and $\vec{v} = 4i + 2j - k$ find $\vec{u} \times \vec{v}$ (xii) Find a vector whose magnitude is 4 and is parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$ (xiii) If A(1,-1), B(2,0), C(-1,3) and D(-2,2) are given points, find the sum of the vectors AB and CD SECTION - II Note: Attempt any THREE questions. 5. (a) Find m and n, so that given function f is continuous at x = 3 $f(x) = \begin{cases} n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$ 5 (b) Prove that $y \frac{dy}{dx} + x = 0$ $f(x) = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ 5 6. (a) If $y = e^{-ax}$, then show that $\frac{d^3y}{dx^3} + a^3y = 0$ 5 (b) Evaluate the indefinite integral $\int \sqrt{x^2 - a^2} dx$ 5 7. (a) Solve the differential equation $2e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$ 5 (b) Maximize f(x,y) = x + 3y subject to the constraints $2x + 5y \le 30$; $5x + 4y \le 20$, $x \ge 0$, $y \ge 0$ 5 8. (a) Find equations of the tangents to the circle $x^2 + y^2 = 2$ perpendicular to the line 3x + 2y = 65 5 (b) Using vectors, prove that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ 9. (a) Find centre, foci, eccentricity, vertices and equation of directrices of $\frac{(y+2)^2}{Q} - \frac{(x-2)^2}{16} = 1$ (b) Find the equations of altitudes of the triangle whose vertices are 5 A(-3,2), B(5,4), C(3,-8)

173-224-I-(Essay Type)-34005