$\frac{LHR-G_2-12-18}{\text{(Academic Sessions 2014-2016 to 2016-2018)}}$

MATHEMATICS

218-(INTER PART - II)

Time Allowed: 30 Minutes

O.PAPER – II (Objective Type)

GROUP - II

Maximum Marks: 20

PAPER CODE = 8198

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

two or more circles will result in zero mark in that question.

1_1	1 1	
1-1	$\frac{u}{-log_{\alpha}x} =$	
	dx	•
	VIV.	

(A)
$$\frac{1}{x}$$

(B)
$$x \ln x - x$$

(C)
$$\frac{1}{x} \ell na$$

(B)
$$x \ln x - x$$
 (C) $\frac{1}{x} \ln a$ (D) $\frac{1}{x \ln a}$

$$2 \int \sin x \cos x dx$$
:

(A)
$$\frac{1}{2}\cos 2x$$

(A)
$$\frac{1}{2}\cos 2x$$
 (B) $-\frac{1}{2}\cos 2x$ (C) $\frac{\sin^2 x}{2}$

(C)
$$\frac{\sin^2 x}{2}$$

$$\frac{\cos^2 x}{2}$$

$$\int \frac{1}{x\sqrt{x^2-1}} dx$$

(A)
$$\sin^{-1} x$$

(C)
$$\sec^{-1}x$$

(D)
$$\cos ec^{-1}x$$

If
$$x = f(\theta)$$
, $y = g(\theta)$ then $\frac{dy}{dx}$:

(A)
$$\frac{dy}{d\theta} \frac{d\theta}{dx}$$

(B)
$$\frac{dx}{d\theta} \frac{d\theta}{dy}$$

(C)
$$\frac{d\theta}{dy} \frac{dx}{d\theta}$$

(D)
$$\frac{dy}{d\theta} \frac{dx}{d\theta}$$

$$\frac{d}{dx}\sec hx = :$$

(A)
$$\sec hx \tanh x$$

$$\sec hx \tanh x$$
 (B) $-\sec hx \tanh x$

(C)
$$\tan h^2 x$$

(D)
$$\sec h^2 x$$

- If at least one vertical line meets the curve at more than two points then curve is :
 - (A) A function

- (B) Not a function
- (C) One to one function
- (D) Onto function

$$\frac{d}{dx}\cosh x = :$$

- $(A) \sin hx$
- (B) sec hx
- (C) $-\sec hx$
- (D) $\sin hx$

$\int \sec^2 x \, dx$:

- (A) $\tan x$ (B) $\frac{\sec^3 x}{3}$
- (C) $\tan^2 x$
- (D) $\sec x \tan x$

Solution of $\frac{dy}{dx} = \frac{-y}{x}$ is:

(A)
$$\frac{x}{y} = c$$

(B)
$$\frac{y}{x} = c$$

(C)
$$y = cx$$

(D)
$$xy = c$$

LHR-G2-12-18 (2)

	CARC-C12-12-10(2)					
1-10	Domain of $f(x) = x$	² + 1 :				
	(A) R	(B) $R - \{1\}$	(C) $R - \{-1\}$	(D) [1,∞)		
11	Equation of line bisecting II and IV quadrant:					
	(A) y = x	(B) $y = -x$	$(C) y = \frac{1}{x}$	(D) $x + y = 1$		
12	Set of all points equidistant from a fixed point form:					
	(A) Ellipse	(B) Parabola	(C) Hyperbola	(D) Circle		
13	Joint equation of two lines is $ax^2 + 2hxy + by^2 = 0$, if θ is angle between them, then $\tan \theta = :$					
	$(A) \frac{2\sqrt{h^2 + ab}}{a + b}$	(B) $\frac{2\sqrt{h^2 - ab}}{a + b}$	(C) $\frac{\sqrt{h^2 + ab}}{a + b}$	$\frac{\sqrt{h^2 - ab}}{a + b}$		
14	Focal chord perpend	icular to axis of para	abola is called:			
	(A) Latus Rectum	(B) Eccentricity	(C) Vertex	(D) Axis		
15	Horizontal line throu	igh (7, -9) is:	~2			
	(A) $x = 7$	(B) $x = -9$	(c) $y = 7$	(D) $y = -9$		
16	Projection of vector	\vec{u} on vector \vec{v} is				
	(A) $\frac{\vec{u} \cdot \vec{v}}{ v }$	(B) $\frac{u}{ u }$	(C) $\frac{\overrightarrow{u} \times \overrightarrow{v}}{ v }$	(D) $\frac{\overrightarrow{u} \times \overrightarrow{v}}{ u }$		
17	Distance of (x_1, y_1)	from line $ax + by + c$	r=0 is:			
			$c = 0$ is : $(C) \frac{\left ax_1 + by_1 + c\right }{\sqrt{a+b}}$	(D) $\frac{\left ax_1 + by_1 - c\right }{\sqrt{a+b}}$		
18	For ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $(a > b)$ then eccentricity $e = :$					
	$(A) \frac{\sqrt{a^2 - b^2}}{a}$	(B) $\frac{\sqrt{a^2+b^2}}{a}$	$(C) \frac{\sqrt{b^2 - a^2}}{a}$	$(D) \frac{\sqrt{b^2 - a^2}}{b}$		
19	If \vec{v} is any vector then vector of magnitude 5 opposite to \vec{v} is:					
	(A) $5\vec{v}$	(B) $-5\vec{v}$	(C) $5\frac{\vec{v}}{ v }$	(D) $-5\frac{\overrightarrow{v}}{ v }$		
20	System of linear inequalities involved in the problem is called:					
	(A) Coefficients	(B) Solution (C	Problem constraints	(D) Boundaries		

(To be filled in by the candidate)

(Academic Sessions 2014 - 2016 to 2016 - 2018)

MATHEMATICS

218-(INTER PART – II)

PAPER - II (Essay Type)

GROUP – II

Time Allowed: 2.30 hours

Maximum Marks: 80

SECTION-I

2. Write short answers to any EIGHT (8) questions :

LHR-G2-12-18

- (i) Prove that $\cosh^2 x + \sinh^2 x = \cosh 2x$
- (ii) Determine whether function $f(x) = \frac{x^3 x}{x^2 + 1}$ is even or odd.
- (iii) Evaluate $\lim_{x\to 0} \frac{\sec x \cos x}{x}$
- (iv) Find $\frac{dy}{dx}$ if $y = \frac{a+x}{a-x}$
- (v) Find $\frac{dy}{dx}$ if $x^2 4xy 5y = 0$
- (vi) Differentiate $x^2 \frac{1}{2}$ w.r.t x^4

- and $\frac{dy}{dx}$ if $y = e^{-2x} \sin 2x$ (x) Find $\frac{d^2y}{dx^2}$ if $y^3 + 3ax^2 + x^3 = 0$ (xi) Find y_2 if $y = \cos^3 x$ ii) Find $\frac{dy}{dx}$ if $y = cos^3 x$

3. Write short answers to any EIGHT (8) questions :

- (i) Find δy and dy: $y = \sqrt{x}$, when x changes from 4 to 4.41
- (ii) Evaluate $\int \frac{e^{2x} + e^x}{e^x} dx$
- (iii) Evaluate $\int (a-2x)^{3/2} dx$
- (iv) Evaluate $\int \frac{x+b}{(x^2+2bx+c)^{\frac{1}{2}}} dx$
- (v) Evaluate $\int xe^x dx$
- (vi) Evaluate $\int e^x \left(\frac{1}{x} + \ell nx\right) dx$
- (vii) Evaluate $\int_{-1}^{3} (x^3 + 3x^2) dx$ (viii) Evaluate $\int_{-1}^{3} \cos^2 \theta \sin \theta d\theta$

16

(Turn Over)

18

5

5

5

5

5

5

- (ix) Find the area between the x-axis and the curve $y = 4x x^2$ from x = 0 to 3.
 - (x) Define differential equation.
 - (xi) Solve $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$
 - (xii) Solve $\frac{dy}{dx} = 2x$

Write short answers to any NINE (9) questions:

- (i) Write down equation of straight line with x-intercept (2,0) and y-intercept (0,-4)
- (ii) Find an equation of a line bisecting 2nd and 4th quadrants.
- (iii) Find an equation of a line with x-intercept : -9 and slope : -4.
- (iv) Prove that if the lines are perpendicular, then product of their slopes =-1
- (v) Find the measure of angle between the lines represented by $x^2 xy 6y^2 = 0$
- (vi) Find focus and vertex of the parabola $y = 6x^2 1$
- (vii) Find equation of latus rectum of parabola $v^2 = -8(x-3)$
- (viii) Find an equation of an ellipse with foci (± 3 , 0) and minor axis of length
 - (ix) Find the foci and length of the latus rectum of the ellipse $9x^2 + 1$
 - (x) Define direction angles and direction cosines of a vector.
- (xi) Find the projection of vector \underline{a} along vector \underline{b} and projection of vector \underline{b} along \underline{a} when $a = \hat{i} - \hat{k}$, $b = \hat{j} + \hat{k}$
- $a = 2\hat{i} + \hat{j} + \hat{k}$ and $\underline{b} = 4\hat{i} + 2\hat{j} \hat{k}$ (xii) Find a vector perpendicular to each of the vectors
- (xiii) Convert 2x 4y + 11 = 0 into slope intercept form.

SECTION

Note: Attempt any THREE questions.

- 5. (a) Prove that
 - (a) Prove that $\lim_{x \to 0} \frac{a^x 1}{x} = \log_e a$ (b) Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1 t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$ 5
- 6. (a) Show that $\int_{-\infty}^{\infty} dx = \ln(x + \sqrt{x^2 a^2}) + c$
 - (b) The points A(-1,2), B(6,3) and C(2,-4) are vertices of a triangle, then show that the line joining the mid-point "D" of \overline{AB} and mid-point "E" of \overline{AC} is parallel to \overline{BC} and $\overline{DE} = \frac{1}{2}\overline{BC}$.
- 7. (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos^4 t \, dt$ 5
 - (b) Graph the feasible region of system of linear inequalities and find the corner points $2x + 3y \le 18, x + 4y \le 12, 3x + y \le 12$ $x \ge 0, y \ge 0$
- 8. (a) Find an equation of parabola having its focus at the origin and directrix parallel to y-axis.
 - (b) Prove that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and half as long.
- 9. (a) Find the centre, foci, eccentricity, vertices and equations of directices of $\frac{y^2}{4} x^2 = 1$ 5
 - (b) Find the value of α , in the coplanar vectors $\alpha \hat{i} + \hat{j}$, $\hat{i} + \hat{j} + 3\hat{k}$, $2\hat{i} + \hat{j} 2\hat{k}$ 5