DGK-62-12-19

**	PAPER COL			
MATHEMATICS	12 th CLASS			0 MINUTES
CROVED CECOM	OBJEC	TIVE,	MARK	S: 20
NOTE W. Land form chaines for as	ach objective type que	estion as A, B, C an	d D. The choice wh	icn 611
you think is correct, fill that the circles. Cutting or filling	circle in front of tha	t dueshou number. C	Se marker of peri so	1111
QUESTION NO. 1				
(1) The area of a circle of unit ra	adius is nearly			
(A) 3.1 (B) 3.14	(C) 3.142	(D) $\frac{\pi}{2}$		
	(-/	2		
(2) $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n =$		m) 1		
(A) e (B) $\frac{1}{e}$	(C) n	(D) $\frac{1}{n}$		
(3) $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} =$				
(a) $h \rightarrow 0$ h (b) $f'(a+b)$) (C) F(x)	(D) f' (a)		
	1) (C) 1 (A)	(2) - (4)		
$(4) \frac{d}{dx} \left(\tan h^{-1} x \right) =$		1		
(A) $\frac{1}{1+x^2}$ (B) $\frac{1}{1-x^2}$	\cdot (C) $\frac{1}{\sqrt{1+x^2}}$	(D) $\frac{1}{\sqrt{1-x^2}}$		
(5) The derivative of v = log	w.r.t.x is			
(A) $\frac{1}{x}$ (B) $\frac{1}{x \ln a}$	(C) In a	(D) x ln a		
(A) x (b) xlna	vill be			
(6) $f(x) = (1+x)^n$, $f(0)$ (A) 0 (B) n	(C) 1	(D) n!	(9)	
(A) ((B) II	(0)			
(7) j a dx =	(C) 1 X	(T)) 0)
(7) $\int a^{x} dx = \frac{a^{x}}{(A)^{\frac{1}{x}}}$ (B) $\frac{a^{x}}{\ln a}$	(C) In a.d	(D) 0		
$(8) \int_{-\pi}^{\pi} \sin x dx =$		3 m		
$(A) \cdot 0 \cdot (B) = \frac{\pi}{2}$	(C) n	(D) $\frac{3\pi}{2}$	(300)	100
(9) $\int_{0}^{x} 3t^{2} dt =$	10	**		
(a) $\int_{-\pi}^{\pi} 3\pi x dx$ (b) $\frac{\pi}{2}$ (c) $\int_{a}^{x^{2}} 3t^{2} dt = (A) x^{3} - a^{3}$ (B) t^{3}	(C) $t^3 - a^3$. (D) 0		
(10) The order of $x \frac{d^2 y}{dx^2} + \frac{dy}{dx}$	-3x = 0 is			
(10) The order of $x \frac{d^2}{dx^2} = \frac{dx}{dx}$ (A) 0 (B) -3	(C) 1 (D)	2		
	11.1		W 12	
(A) Decicion Variables	(B) Feasible Solution	set (C) Optimal S	olution (D)Associa	ed Equation
(12) Equation of a non vertical	line with slope m	ma y intercept zero	is	
$(A) v = v \qquad (B) v = r$	nx (C) $y = mx$	+c (D) y-0		
(12) The lines av2 + 2hxy + b	$v^2 = 0$ will be parall	el if		
11 12 1 (D) h2-	(C) $h^* >$	ab (D) a+0-2	/2 /1\ ie	
(14) The centriod of the triang	le A ABC with vertice	es A(0,0), D(1,0), C	4	
(A) (O O) (B) (1.1) (C) (3	(1,2)	, 3)	
(15) The distance of the line	2x - 5y + 13 = 0	from the point (0,	0) is	
(A) 13 (B)	10 (C) 4	(D) $\frac{13}{\sqrt{29}}$		
(16) The radius of the circle x	$^{2} + v^{2} + 4x - 6y - 3 =$	= 0		
	(C) 4	(D) 6		
(A) 7 (B) 10 (17) $x \cdot y = 1$ represents				
(A) Circle (B) P	arabola (C) Elli	ipse (D) Hyper	rboia	
(18) A solution of the inequal	lity $x + 2y < 6$ is	(D) (5)	0	
(A) (1, 1) (B) ((4, 4) (C) ((6, 2) (D) (5, 4	ent vector. To The v	vork done will be
(A) (1, 1) (B) (19) A force F is applied at a	in angle of measure	with the displacem	icht vector (. rue v	10111 40110
(A) $\vec{F} \times \vec{r}$ (B)	(C) 0	(D) infinite		
(20) The projection of a vector				
- T	<u> 道. </u>	\vec{b} (D) $\frac{\vec{a}}{\vec{b}}$		
(A) $\frac{a \cdot b}{ a }$ (B)	161			
	ractional beautiful	er.	OHENCE - 1	

MATHEMATICS GROUP SECOND

12th CEASS - 12019 SUBJECTIVE SECTION-I

TIME: 2.30 HOURS MARKS: 80

16

18

QUESTION NO. 2 Write short answers any Eight (8) questions of the following

1	Define odd and even functions.				
2	Find $f^{\dagger}(x)$ if $f(x) = 3x^3 + 7$				
3	Evaluate $\lim_{X \to \pi} \frac{\sin x}{\pi - x}$			- 1	
4	Find $\frac{dy}{dx}$ if $y = (\sqrt{x} - \frac{1}{\sqrt{x}})^2$				
5	Find $\frac{dy}{dx}$ if $xy + y^2 = 2$		18		
6	Differentiate x2.sec 4x w.r.t. "x".				
7	Find $\frac{dy}{dx}$ if $y = \ln(x + \sqrt{x^2 + 1})$				7.7
8	Find y_2 if $x^3 - y^3 = a^3$				
9	Define stationary point.				
10	Find $\frac{dy}{dx}$, if $y = \tan h^{-1} (\sin x)$				
11	Find extreme values for $f(x) = x^2 - x - 2$				-
12	Prove that $e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \dots$. by Mac	lauren Seri	es expans	ion

QUESTION NO. 3 Write short answers any Eight (8) questions of the following

	The short address any Light (b) questions	or the mil	Owns		
1	Find dy for $y\sqrt{x}$ when x changes from 4 to 4.41			*	
2	Using differentials find $\frac{dy}{dx}$ for $x^4 + y^2 = xy^2$				
3	Evaluate $\int \frac{3-\cos 2x}{1+\cos 2x} dx$				J
4	Evaluate $\int \frac{\sqrt{y}(y+1)}{y} dy$, $y > 0$			Q.	
5	Evaluate $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$			100000	
6.	Evaluate, ∫ x tan²x dx.				
7	Evaluate f x3lnx dx			cilo siù	-
8	Evaluate $\int e^{-x}(\cos x - \sin x) dx$		~~		
9	Evaluate $\int_0^{\pi/4} \sec x (\sec x + \tan x) dx$				
10	Evaluate $\int_{-1}^{1} (x + \frac{1}{2}) \sqrt{x^2 + x + 1} dx$				
11	Define order of a differential equation.				
12	Graph the solution set of linear inequality $3x - 2y \ge 6$				

OUESTION NO. 4. Write short answers any Nine (9) questions of the following

in the Marian Service

HO	NO. 4 Write short answers any Nine (9) questions of the following
1	Show that the lines $2x+y-3=0$ and $4x+2y+5=0$ are parallel.
2	Transform the equation $5x - 12y + 39 = 0$ into normal form.
3.	Check whether the point $P(5,-8)$ lies above or below the line $3x + 7y + 15 = 0$
4	Find the distance between the points A (3, 1), B(-2, -4).
5	Find the centre and radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$
6.	Find the focus and the vertex of the parabola $x^2 = 5y$
7	Find the point of intersection of the conics $x^2 + y^2 = 8$ and $x^2 - y^2 = 1$
8	Find an equation of hyperbola with foci $(0, \pm 6)$, $e = 2$.
9	Find a unit vector in the direction of $\underline{V} = i + 2j \cdot \underline{k}$
10	Find a vector perpendicular to $\underline{a} = \underline{i} + \underline{j}$ and $\underline{b} = \underline{i} - \underline{j}$
11	If $\underline{U} = 2\underline{i} - \underline{j} + \underline{k}$ and $\underline{V} = -\underline{i} + \underline{j}$ then find $\underline{U}.\underline{V}$
12	Define scalar triple product.
13	If $\underline{U} = 2\underline{i} + 3\underline{j} + \underline{k}$, $\underline{V} = 4\underline{i} + 6\underline{j} + 2\underline{k}$ then find $ \underline{U} + 2\underline{V} $

DGK-12-92-19

SECTION-II

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

1 7	1 10 1 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1			Ton
Q.5-(A)	Find the graphical solution of the equation x = sin 2x		100	
(B)	Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$	-		
Q.6-(A)	Find $\int \sqrt{a^2 - x^2} dx$			
	1 Salar			
(B)	Three points A (7, -1), B (-2, 2) and (1,1) are consecutive vertices of Find the fourth vertex	w.,		
	Find the fourth vertex	Epar	allelogram	
	. ,			
Q.7-(A)	Solve the differential equation $(y - x \frac{dy}{dx}) = 2(y^2 + \frac{dy}{dx})$			
(B)	Graph the feasible ration and C. L.			
	Graph the feasible region and find the corner points $x + 3y \le 15$		1	
Fr. 5 de	$x + 3y \le 15$, $2x + y \le 12$, $x \ge 0$, $y \ge 0$			
140 0	P. Missale			
Q.8-(A)	Check whether the lines $4x - 3y - 8 = 0$; $3x - 4y - 6 = 0$ and $x - y - 1$ If so, find the point where they meet	_		
201	If so, find the point where they meet	2 = 0	are conci	urrent.
			7 (1)	1
(B)	Find the equations of tangents drawn from point (0, 5) to the circle	2+3	$r^2 = 16$	
		_	No.	1
2.9-(A)	Show that an equation of parabola with focus at $(a \cos \alpha, a \sin \alpha)$ and	2		
	$\alpha + \alpha = 0$ is			
	$(x \sin \alpha - y \cos \alpha)^2 = 4a (x \cos \alpha + y \sin \alpha)$			
(D)			3 4 T	
(B) I	Find area of the triangle with vertices A(1,-1,1), B(2, 1,-1) and	C (-1	1 2)	
		- (-1	, .,2/	

118 (Sub) -12019 -60000

0