Roll No		0 1 0010 0		by the candidate)			
Q.PAPEI Note : F	MATICS R – II (Objective Type) our possible answers A, B, ill that circle in front of the	222-(INTER PA GROUP PAPER CODI C and D to each que at question with Ma	- II E = 8192 estion are given. The or rker or Pen ink in the	Time Allowed: 30 Minutes Maximum Marks: 20 choice which you think is correct, answer-book. Cutting or filling			
two or more circles will result in zero mark in that question. \(\frac{1}{2} \) - \(\frac{1}{2} \) - \(\frac{1}{2} \) 1-1 If the degree of a polynomial function is 1, then it is called:							
	(A) Identity function (B) Linear function						
	(C) Constant function	n (D) Trig	onometric function	1			
2	$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x} = :$		٠				
ı	(A) 2	(B) $\frac{1}{2}$	(C) 4	(D) 5			
3	If $y = \frac{1}{x^2}$, then $\frac{dy}{dx}$			60,			
	(A) 2	(B) 3	(C) $\frac{1}{3}$	(D) 4			
4	$\frac{d}{dx}(\cot^{-1}x) = :$		W.				
	(A) $\frac{1}{1+x^2}$	(B) $\frac{-1}{1+x^2}$	(C) - cos ed	e^2x (D) \sec^2x			
5	vill be maximum are:						
	(A) 14, 16	(B) 15, 15	(C) 10,	20 (D) 12,18			
6	$\left[\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = :$	OX					
	(A) $\frac{f(x)g'(x)-f'(x)}{[g(x)]^2}$	g(x) (B)	$\frac{f'(x)g(x) - f(x)g'(x)}{[f(x)]^2}$	<u>(x)</u>			
	(C) $\frac{g(x)f'(x)-f(x)}{[g(x)]^2}$	g'(x) (D)	$\frac{g'(x) f(x) - g(x) f(x)}{[g(x)]^2}$	<u>x)</u>			
7	$\int \sec x dx = :$						
(A) $\ln(\sec x + \tan x) + c$ (B) $\ln(\cos ec x + \cot x) + c$							
apa Marya	(C) $\ln(\sin x + \cos x)$	+c (D)	$\sec x + \tan x + c$	y			
The solution of differential equation $\frac{dy}{dx} = -y$ is:							
	$(A) y = x e^{-x}$	(B) $y = ce^{-x}$	(C) $y = e^x$	(D) $y = ce^x$			
9	$\int_{-1}^{3} x^3 dx = :$						
	(A) 20	(B) 40	(C) 30	(D) 60			
		(-)	(-)	(Turn Over)			

(2) LUR-92-22 10 $\sin 3x \, dx = :$ (B) $\frac{\cos 3x}{3} + c$ (C) $3\cos 3x + c$ (D) $-3\cos 3x + c$ (A) $-\frac{\cos 3x}{3} + c$ An equation of the horizontal line through the point P (7, -9) is: 11 (A) y=-9 (B) y=9 (C) x=7 (D) x=-7The perpendicular distance of line 3x+4y+10=0 from the origin is: 12 (A) 0 (B) 1 (C) 2 Slope of line perpendicular to line 3x-4y+5=0 is : 13 (A) $\frac{-3}{4}$ (B) $\frac{-4}{3}$ (C) $\frac{3}{4}$ (D) Point of intersection of lines x-2y+1=0 and 2x-y+2=0 equals: 14 (A) (1,0) (B) (0,1) (C) (-1,0) (D) (0,-1) (0,0) is the solution of inequality: 15 (A) 7x+2y>3 (B) x-3y>0 (C) x-2y<6 (D) x-3y<0The condition for a line y=mx+c to be the tangent to the circle $x^2+y^2=a^2$ is : 16 (A) $c = \pm m\sqrt{(1+a^2)}$ (B) $c = \pm a\sqrt{1+m^2}$ (C) $c = \pm a\sqrt{1-m^2}$ (D) $c = \pm m\sqrt{1-a^2}$ In an ellipse, the foci lie on: 17 (B) Minor axis (A) Major axis (C) Directrix (D) Z-axis The radius of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is: 18 (B) $\sqrt{g^2 - f^2 + c}$ (C) g + f - c (D) $\sqrt{g^2 + f^2 - c}$ (A) $\sqrt{g^2 + f^2 + c}$ 19 Length of the vector $2\hat{i} - \hat{j} + 2\hat{k}$ is : (A) 6 (B) 4 (C) 3 (I Cosine of the angle between two non-zero vectors \underline{a} and \underline{b} is: 20 (B) $\frac{|\underline{a}||\underline{b}|}{\underline{a} \cdot \underline{b}}$ (A) $\underline{a} \cdot \underline{b}$

174-222-II-(Objective Type)- 8750 (8192)

Roll No

(To be filled in by the candidate)

(Academic Sessions 2018 - 2020 to 2020 - 2022)

MATHEMATICS PAPER – II (Essay Type)

222-(INTER PART - II)

GROUP - I

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION - I

- 2. Write short answers to any EIGHT (8) questions :
 - (i) Express perimeter "P" of a square as a function of its area "A"
 - (ii) Find $f^{-1}(x)$ for f(x) = -2x + 8
 - (iii) Evaluate $\lim_{x\to 0} \frac{\sin x^{\circ}}{x}$
 - (iv) Define rational function with example.
 - (v) Evaluate $\lim_{x \to \infty} \left(\frac{x}{1+x} \right)^x$
 - (vi) Find $\frac{dy}{dx}$ from first principle if $y = \sqrt{x+2}$
 - (vii) Differentiate w.r.t. "x"; $y = \frac{x^2 + 1}{x^2 3}$
 - (viii) Find $\frac{dy}{dx}$ if $xy + y^2 = 2$
 - (ix) Find derivative w.r.t. x if $y = \cot^{-1}\left(\frac{x}{a}\right)$ (x) Find $\frac{dy}{dx}$ if $y = \log_{10}(ax^2 + bx + c)$

 - (xi) Apply the Maclaurin Series to prove that $e^{2x} = 1 + 2x + \frac{4x^2}{12} + \frac{8x^3}{13} + ---$
 - (xii) Define increasing function with example.
- 3. Write short answers to any EIGHT (8) questions :
 - (i) Find δy and δy in $y = \sqrt{x}$, when x changes from 4 to 4.41
 - (ii) Evaluate the integral $\int \frac{(\sqrt{\theta}-1)^2}{\sqrt{\theta}} d\theta$, $\theta > 0$
 - (iii) Find $\int \frac{1}{x(\ln x)} dx$
 - (iv) Evaluate the integral $\int \frac{x+2}{\sqrt{x+3}} dx$
 - (v) Using by part method to evaluate $\int x^2 \ln x \, dx$
 - (vi) Evaluate the definite integral $\int_{0}^{\infty} \cos^{2}\theta \sin\theta \, d\theta$
 - (vii) Find the area between the x-axis and the curve $y = \cos \frac{1}{2}x$ from $x = -\pi$ to π
 - (viii) Solve the differential equation $\sin y \cos ec x \frac{dy}{dx} = 1$
 - (ix) Find h such that A(-1,h), B(3,2), C(7,3) are collinear.

16

16

3		(x)	Two points $P(-5, -3)$ and $O'(-2, -6)$ are given in XY-coordinate, find the coordinate of P in xy-coordinate system.	
		(xi)	Find equation of the line having x-intercept – 3 and y-intercept 4.	
	(:	xii)	Find the distance from the point P (6, -1) to the line $6x - 4y + 9 = 0$	
4	. Wi	rite s	short answers to any NINE (9) questions:	18
		(i)	Define problem constraint.	
		(ii)	Graph the solution set of the linear inequality $3y-4 \le 0$	
		(iii)	Find slope of tangent to $x^2 + y^2 = 5$ at $(4,3)$	
		(iv)	Find α if $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular to each other.	
		(v)	Find the direction cosine of the vector \overline{PQ} , where P(2, 1, 5) and Q(1, 3, 1)	
		(vi)	Find the vector from point A to origin where $\overline{AB} = 4i - 2j$ and B is the point $(-2, 5)$	
		vii) viii)	Find cosine of the angle between $\underline{u} = [-3,5]$ and $\underline{v} = [6,-2]$ Write standard equation of the hyperbola.	
		(ix)	Find the centre of the ellipse $9x^2 + y^2 = 18$	
		(x) (xi)	Find the equation of the circle with centre $(5, -2)$ and radius is 4. Find the equation of the hyperbola with foci $(\pm 3, 0)$ and vertex $(3, 0)$	
	(xii)	Find centre and radius of the circle $4x^2 + 4y^2 - 8x + 12y - 25 = 0$	
	(xiii)	Find focus and vertex of the parabola $x^2 = 5$	
			SECTION II	
N	ote :	At	ttempt any THREE questions.	
5.	(a)	Pro	ve that $\lim_{x\to 0} \frac{a^x - 1}{x} = \log_e a$	5
	(b)	If .	$x = \frac{1 - t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$ prove that $y = \frac{dy}{dx} + x = 0$	5
6.	(a)	Eva	duate $\int \ln(x+\sqrt{x^2+1}) dx$	5
			we that the linear equation $ax + by + c = 0$ in two variables x and y represents	
	(0)		raight line.	5
7	(a)	Ein	If the area between the x-axis and the curve $y = \sqrt{2ax - x^2}$ when $a > 0$	
			ph the solution region of the system of linear inequalities and find the corner	5
		poir	ints of $2x - 3y \le 6$, $2x + 3y \le 12$, $x \ge 0$	5
3.	(a)	Find	d a joint equation of the lines through the origin and perpendicular to the lines esented by $x^2 - 2xy \tan \alpha - y^2 = 0$	_
				5
	(b)	Find P(-	d equations of the tangent lines to the circle $x^2 + y^2 + 4x + 2y = 0$ drawn from $-1, 2$)	5
				3
	(a)	Find	the centre, foci, eccentricity, vertices and equations of directrices of $\frac{y^2}{16} - \frac{x^2}{9} = 1$	5
			we that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	5

173-222-I-(Essay Type)-28000