PAPER CODE - 8191 12th CLASS - 12022

TIME: 30 MINUTES

MATHEMATICS

OBJECTIVE

MARKS: 20

GROUP: FIRST

OBJECTIVE

MARKS: 20

NOTE: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

QUEST	LION	NO.	1
4	11:00	.:+	_

	TION NO. 1	
1	$\lim_{X \to +\infty} \frac{2-3x}{\sqrt{3+4x^2}} = \dots$	
	$(A) \frac{3}{2} (B) -\frac{3}{2} (C) + \infty (D) - \infty$	
	If $f(x) = \begin{cases} x+2 & x \le -1 \\ c+2 & x > -1 \end{cases}$ and $\lim_{x \to -1} f(x)$ exists then $c = \dots$	
2	If $f(x) = \begin{cases} c+2 & x > -1 \end{cases}$ and $x \to -1$ $f(x)$ exists then $c = \dots$	
l i	(A) -2 (B) 2 (C) 1 (D) -1	
3	$\frac{d}{dx} \sin h^{-1} x = \dots$	
	dx 11 (m) 1	
	(A) $\frac{1}{\sqrt{1+x^2}}$ (B) $\frac{-1}{\sqrt{1+x^2}}$ (C) $\frac{1}{\sqrt{1-x^2}}$ (D) $\frac{-1}{\sqrt{1-x^2}}$	
4	Any point where function f is neither increasing nor decreasing provided $f(x) = 0$ is called	
	(A) Critical point (B) Point of inflection (C) Stationary point (D) Feasible point	
5	$\frac{d}{dx}\cos(ax+b) = \dots$	
3	$\frac{dx}{(A)} = \frac{dx}{(ax+b)} \qquad (B) = \sin(ax+b) \qquad (C) = \sin(ax+b) \qquad (D) = \sin(ax+b)$	
	(A) $\sin (ax + b)$ (B) $-a \sin (ax + b)$ (C) $a \sin (ax + b)$ (D) $-\sin (ax + b)$	
6	$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}} e^{3\mathbf{x}} = \dots$	
}	$(A) \frac{1}{3} e^{3x}$ (B) e^{3x} (C) $3 e^{3x}$ (D) $3 e^{3x} \ln 3$	
7	$\int_{-\pi}^{\pi} \sin x dx = \dots $ (A) -1 (B) 0 (C) 1 (D) cos x	
	(A) -1 (B) 0 (C) 1 (D) cos x	
8	$\int \frac{e^x}{x} dx = \dots$	
	$(A) e^{x} + 3 + c$ (B) $e^{x} + c$ (C) $e^{x} \ln (e^{x} + 3) + c$ (D) $\ln (e^{x} + 3) + c$	
9	$\begin{pmatrix} x & dy = 0 \\ 0 & dy = 0 \end{pmatrix}$	
9.	$\int \frac{1}{\sqrt{4+x^2}} dx - \dots$	
1	$\int \frac{e^{x}}{e^{x}+3} dx = \dots$ (A) $e^{x} + 3 + c$ (B) $e^{x} + c$ (C) $e^{x} \ln(e^{x} + 3) + c$ (D) $\ln(e^{x} + 3) + c$ $\int \frac{x}{\sqrt{4+x^{2}}} dx = \dots$ (A) $\sqrt{4+x^{2}} + c$ (B) $\frac{1}{2}\sqrt{4+x^{2}}$ (C) $\frac{1}{(x+4)^{3/2}} + c$ (D) $\ln \sqrt{4+x^{2}} + c$	
10	G. L. C. L'CC	
10	Solution of differential equation $\frac{dy}{dx} - y$ is	
	(A) $y = -ce^{-x}$ (B) $y = ce^{-x}$ (D) $y = e^{-x}$	
11	The distance between the points A (3, 1), B (-2, -4)	
	(A) $2\sqrt{5}$ (B) $5\sqrt{2}$ (C) $\sqrt{5}$ (D) $\sqrt{2}$	
12	The point of intersection of the lines $3x + y + 12 = 0$ and $x + 2y - 1 = 0$ is	
	(A) (5,3) (B) (-5,-3) (C) (5,-3) (D) (-5,3)	
13	Slope of the line $2x + 5y - 8 = 0$ is	
	(A) -2/5 (B) 2/5 (C) 5/2 (D) -5/2	
14	The y-intercept of the equation of line $5x - 12y + 39 = 0$	
1	(A) $\frac{5}{12}$ (B) $\frac{-39}{12}$ (C) $\frac{39}{12}$ (D) $\frac{-5}{12}$	
15	Graph of the inequality $x + 2y < 6$ lies	
120	(A) Opposite to origin (B) Toward origin (C) in 1st quadrant (D) in 2nd quadrant	
16	Radius of the circle with equation $x^2 + y^2 + 2gx + 2fy + c = 0$ is	
	(A) $\sqrt{g^2 + f^2 + c}$ (B) $\sqrt{g^2 - f^2 - c}$ (C) $\sqrt{g^2 + f^2 - c^2}$ (D) $\sqrt{g^2 + f^2 - c}$	
17	The line through the focus and perpendicular to the directrix of parabola is called	
1/	(A) tangent to parabola (B) axis of parabola (C) latusrectum of parabola (D) vertex of parabola	
10	$x = a \cos\theta$, $y = b \sin\theta$ are parametric equations of	
18	$x = a \cos\theta$, $y = b \sin\theta$ are parametric equations of	
19	If u and v be two vectors making an angle θ with each other then projection of $\underline{\mathbf{u}}$ along $\underline{\mathbf{v}}$ is	
13		
	(A) $\frac{\underline{\underline{u}} \cdot \underline{\underline{v}}}{ \underline{\underline{v}} }$ (B) $\frac{\underline{\underline{u}} \cdot \underline{\underline{v}}}{ \underline{\underline{u}} }$ (C) $\frac{\underline{\underline{u}} \times \underline{\underline{v}}}{ \underline{\underline{v}} }$ (D) $\frac{\underline{\underline{u}} \times \underline{\underline{v}}}{ \underline{\underline{u}} }$	
20	$3j \cdot \underline{k} \times \underline{i} = \dots$	
20		
20	(A) 0 (B) - 3 (C) j (D) 3	

TIME: 2.30 HOURS **MARKS: 80**

SECTION-I

QUES	TION	NO. 2 Write short answers any Eight (8) of the following Dak-G1-33	
	i	Prove the identity $\operatorname{sec} h^2 x = 1 - \tan h^2 x$	
	ii	If $f(x) = 2x + 1$ and $g(x) = x^2 - 1$. The obtain the expression $fg(x)$	
	iii	Obtain $f^{-1}(x)$ from $f(x) = -2x + 8$	
	iv	Evaluate $\lim_{x\to 0} \frac{\sin x^{\circ}}{x}$	
		If $f(x) = \begin{cases} x + 2, & x \le -1 \\ c + 2, & x > -1 \end{cases}$, find "c" so that $\lim_{x \to -1} f(x)$ exists	
		If $y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$, then find $\frac{dy}{dx}$	
	1	Differentiate $x^2 - \frac{1}{x^2}$ w.r.t. " x^4 "	
	viii	If $y = x^2 \sec 4x$, then find $\frac{dy}{dx}$	
	ix	Obtain $f(x)$ from $f(x) = x^3 \cdot e^{1/x}$	
p.	х	Find $\frac{dy}{dx}$ if $y = x e^{\sin x}$	
	xi	Determine the interval in which $f(x) = 4 - x^2$, $x \in (-2, 2)$ is increasing	

QUESTION NO. 3 Write short answers any Eight (8) of the following

Examine the function $f(x) = x^2 - x - 2$ for critical values

16

ii	Find $\int \frac{dx}{\sqrt{x+1}-\sqrt{x}}$	
iii	Find $\int x \cdot \sqrt{x^2 - 1} dx$	
iv	Find $\int \frac{x^2}{x^2+4} dx$	
·V	Find ∫ tan ⁻¹ x dx	

Use differentials to find $\frac{dy}{dx}$ if xy + x = 4

 $e^{-x}(\cos x - \sin x) dx$

 $\int_{-6}^{2} \sqrt{3-x} \, dx$ vii

Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$ viii

Find the equation of a vertical line through (-5, 3)

Convert the equation 2x - 4y + 11 = 0(i) Two intercepts form (ii) Normal form X

Check whether the point (5, 8) lies below or above the line 2x - 3y + 6 = 0xi

Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$

QUES	TION	NO. 4 Write short answers any Nine (9) of the following	
	i	Graph the solution set of $3x - 2y \ge 6$	
	ii	Graph the solution set of the following linear inequality $3x + 7y \ge 21$, $y \le 4$	
	iii	If $v = \frac{-\sqrt{3}}{2} \underline{i} - \frac{1}{2} \underline{j}$. then find a unit vector in the direction of \underline{v}	
	iv	If $\underline{\mathbf{u}} = 2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = 4\underline{\mathbf{i}} + 6\underline{\mathbf{j}} + 2\underline{\mathbf{k}}$ and $\underline{\mathbf{w}} = -6\underline{\mathbf{i}} - 9\underline{\mathbf{j}} - 3\underline{\mathbf{k}}$ then find $\underline{\mathbf{u}} + 2\underline{\mathbf{v}}$	
	v	If $\underline{a} = 2\underline{i} - 2\underline{j} + 4\underline{k}$, $\underline{b} = -\underline{i} + \underline{j} - 2\underline{k}$ then find a unit vector perpendicular to plane	
		containing <u>a</u> and <u>b</u>	
	vi	If $\underline{\mathbf{u}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = \underline{\mathbf{i}} - 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ and $\underline{\mathbf{w}} = \underline{\mathbf{i}} - 7\underline{\mathbf{j}} - 4\underline{\mathbf{k}}$. Then find volume of	
		parallelepiped by these vectors	
	vii	Find work done, if the point at which the constant force $\underline{F} = 4\underline{i} + 3\underline{j} + 5\underline{k}$ is applied to an	
		object moves from P ₁ (3, 1, -2) to P ₂ (2, 4, 6)	
	viii	Write equation of normal to the circle $x^2 + y^2 = 25$ at $(5 \cos \theta, 5 \sin \theta)$	
	ix	Find focus of the parabola $x^2 - 4x - 8y + 4 = 0$	
	х	Find eccentricity and vertices of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$	
	xi	Define circle and write equation of circle in standard form	
	xii	Find equation of the parabola with focus $(2, 5)$ and directrix $y = 1$	
* x	xiii	Find centre and foci of the hyperbola $\frac{y^2}{4} - x^2 = 1$	

SECTION-II

Note: Attempt any Three questions from this section.

 $10 \times 3 = 30$

MIL		
ノベト	-4	1-27
-		

Q.5- (A) If
$$x = \frac{1-t^2}{1+t^2}$$
, $y = \frac{2t}{1+t^2}$, then show $y \frac{dy}{dx} + x = 0$

- (B) Find m and n so that the given function is continuous at x = 3 if $f(x) = \begin{cases} mx & \text{if } x < 3 \\ n & \text{if } x = 3 \\ -2x + 9 & \text{if } x > 3 \end{cases}$
- Q.6- (A) Find $\int \sin^4 x \, dx$
 - (B) Find the equation of the line through (5, -8) and perpendicular to join of A(-15, -8), B(10, 7)
- Q.7-(A) Evaluate $\int_{-1}^{2} (x + |x|) dx$
 - (B) Maximize f(x,y) = x + 3y; subject to the constraints $2x + 5y \le 30$, $5x + 4y \le 20$, $x \ge 0$, $y \ge 0$
- Q.8-(A) Find the area of the region bounded by the triangle whose sides are 7x y 10 = 0; 10x + y 41 = 0; 3x + 2y + 3 = 0
 - (B) Determine the equations of tangents to the circle $x^2 + y^2 = 2$ perpendicular to the line 3x + 2y = 6
- Q.9-(A) By transforming the equation $x^4 + 4y^2 2x + 8y + 4 = 0$ referred to a new origin and axes remaining parallel to the original axes, the first terms are removed. Find the coordinates of the new origin and the transformed equation
 - (B) Prove that: $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$