Objective Paper Code

Intermediate Part Second FBD-G2-2 Roll No.:

8198

MATHEMATICS (Objective) Group – II
Time: 30 Minutes Marks: 20

You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, ill the celevant circle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. Objective type question paper and leave other circles blank.

S.#	Questions	A	В	C	D
1	The altitudes of a triangle are:	Concurrent	Parallel	Perpendicular	
2	The line $y = 3x$ passes through:	Origin	(4,3)	(3,1)	(0,3)
3	A quadrilateral having two parallel and two non- parallel sides is called:	Parallelogran	Rhombus	Trapezium	Triangle
4	The maximum or minimum values of objective function occur at corner points of the feasible region, is called:	The theorem	Feasible	Optional theorem	Convex
5	The focus of $y^2 = -4ax$ is:	programming (0,0)	(a,0)	(-a.0)	(a,a)
6	The eccentricity of parabola is:	0	1	Less than one	Not defined
7	The center of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is:	(0,0)	(a,0)	(0,b)	(a,b)
8	If \vec{u} , \vec{v} and \vec{w} are coplaner vectors than the volume of the parallelopiped so formed is:	1	0	u×v×w	$\sqrt{u^2 + v^2 + w^2}$
9	The magnitude of $\bar{\mathbf{u}} = \mathbf{i} + \mathbf{j}$ is:	$2\sqrt{i^2+j^2}$	2	$\sqrt{2}$	$\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
10	The unit vector in the direction of $2\hat{i} - \hat{j}$ is:	5	√5	2i – j	$\frac{\hat{\mathbf{i}} + \hat{\mathbf{j}}}{\sqrt{2}}$ $\frac{2\mathbf{i} - \mathbf{j}}{\sqrt{5}}$
11	A function $C : R \to R$ defined by $C(x) = 2$ for all $x \in R$ is called:	Domain	Range	Constant function	Objective function
2	For the function $f(x) = x^n$, $\lim_{x \to a} \frac{x^n - a^n}{x - a} = :$	nx ⁿ⁻¹	na ⁿ⁻¹	0	σ0
-+	If $f(x) = x $ then $f'(0) = :$	0	1	-1	Does not exist
4	The sum of two integers is 9. If one integer is x, then other will be:	9x	9-x	x-9	x+9
_	The derivative of arc cos x is:	$\frac{-1}{\sqrt{1-x^2}}$	$\frac{1}{\sqrt{1+x^2}}$	$\frac{1}{\sqrt{x^2-1}}$	$\frac{-1}{\sqrt{x^2-1}}$
6	The first term of Taylor Series Expansion of $ln(1+x)$ at $x=2$ is:	ℓn 3	ℓn 2	ℓn 1	ln 0
7 1	$\tan x dx = :$	sec ² x	sec x tan x	ℓn sec x	ℓn cos x
Т	The suitable substitution to integrate $\sqrt{x^2 - a^2}$:	$x = a \sin \theta$	$x = a \cos \theta$	$x = a \sec \theta$	$x = a \tan \theta$
1	$e^{ax}[af(x) + f'(x)] dx = :$	e ^{ax} f(x)	$e^{ax}a \cdot f(x)$	e ^{ax} f'(x)	a f'(x)
J	$\frac{2}{x+2} dx = :$	ln x + 2	$\ln x+2 ^2$	$\frac{1}{\ell n x+2 }$	2

318-XII121-20000

Intermediate Part Second F60-42-21 Roll No.

MATHEMATICS (Subjective) Time: 02:30 Hours

SECTION - I

Group - II Marks: 80

2. Attempt any EIGHT parts:

16

16

- Determine whether the function is even or odd for $f(x) = x^{\frac{2}{3}} + 6$
- Without finding inverse state domain and range of $f(x) = \frac{x-1}{x-4}$, $x \ne 4$
- (iii) Evaluate $\lim_{\theta \to 0} \frac{1-\cos\theta}{\theta}$
- Show that $x = at^2$, y = 2at represent parametric equation of $y^2 = 4ax$
- Differentiate w.r.t. 'x' if $y = \frac{x^2 + 1}{x^2 3}$
- (vi) Differentiate $x^2 \frac{1}{x^2}$ w.r.t. x^4
- (vii) Find $\frac{dy}{dy}$ if $y = xe^{\sin x}$
- (viii) Find y_2 if $x^3 y^3 = a^3$
- (ix) Prove that $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$
- Differentiate w.r.t. x, $\sin^{-1} \sqrt{1-x^2}$
- (xi) Find $\frac{dy}{dx}$ if $y = e^{-2x} \sin 2x$
- (xii) Find y_4 if $y = \ln(x^2 9)$

3. Attempt any EIGHT parts:

- Using differentials find $\frac{dy}{dx}$ when $\frac{y}{x} \ell nx = \ell nc$
- Evaluate $\int \frac{3-\cos 2x}{1+\cos 2x} dx$
- Evaluate the indefinite integral $\int \frac{(\sqrt{\theta}-1)^2}{\sqrt{\theta}} d\theta$
- Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$
- Find the antiderivative of xlnx
- Evaluate the given integral | sec4 x dx
- (vii) Solve the differential equation $\sec x + \tan y \frac{dy}{dx} = 0$
- (viii) Find the area, above the x-axis and under the curve $y = 5 x^2$ from x = -1 to x = 2
- (ix) Show that the points A(0, 2), B($\sqrt{3}$,-1) and C(0,-2) are vertices of a right triangle.
- Convert the given equation into normal form: 15y - 8x + 3 = 0
- (xi) Find the interior angles (any two) of the triangle whose vertices are A (2, -5), B(-4, -3), C(-1, 5)
- (xii) Find an equation of each of the lines represented by $2x^2 + 3xy 5y^2 = 0$

(Continued P/2)

PIGO GETI	18				
 4. Attempt any NINE parts: (i) Graph the solution set of 2x + y ≤ 6 by shading. (ii) Find the value of α so that the vectors α<u>i</u> + <u>j</u>, <u>i</u> + <u>j</u> + <u>3k</u> and 2<u>i</u> + <u>j</u> - 2<u>k</u> are coplaner. (iii) If 0 is the origin and OP = AB. Find the point P when A and B are (-3,7) and (1,0) respectively. (iv) If <u>y</u> = 3<u>i</u> - 2<u>j</u> + 2<u>k</u> and <u>w</u> = 5<u>i</u> - <u>j</u> + 3<u>k</u>, then find 3<u>y</u> + <u>w</u> (v) Find a unit vector perpendicular to plane containing <u>a</u> and <u>b</u> and <u>a</u> = -<u>i</u> - <u>j</u> - <u>k</u>, <u>b</u> = 2<u>i</u> - 3<u>j</u> + 4<u>k</u> (vi) Compute cross product, <u>a</u> × <u>b</u>, <u>b</u> × <u>a</u>, if <u>a</u> = -4<u>i</u> + <u>j</u> - 2<u>k</u> and <u>b</u> = 2<u>i</u> + <u>j</u> + <u>k</u> (vii) Find work done, if the point at which the constant force <u>F</u> = 4<u>i</u> + 3<u>j</u> + 5<u>k</u> is applied to an object moves from P₁(3, 1, -2) to P₂(2, 4, 6) (viii) Find an equation of circle with center at (√2, -3√3) and radius is 2√2 (viii) Find length of tangent drawn from point P(-5, 4) to the circle 5x² + 5y² - 10x + 15y - 131 = 0 (x) Find focus and vertex of the parabola x² = 4(y - 1) (xi) Find center and eccentricity of 4y² + 12y - x² + 4x + 1 = 0. (xii) Define circle and just write its standard equation. (xiii) Find equation of tangent to the circle 4x² + 3y² + 5x - 13y + 2 = 0 at (1, 10/3). SECTION — II Attempt any THREE questions. Each question carries 10 marks.					
	05				
5. (a) If $f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases}$, find the value of k so that f is continuous at $x = 2$	05				
(b)Differentiate ab-initio w.r.t. 'x'; sin√x	05				
6. (a) Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$ (b) Find the condition that lines $y = m_1 x + c_1$, $y = m_2 x + c_2$ and $y = m_3 x + c_3$ are concurrent.	05				
<u>.</u>	05				
7. (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin x - 1}{\cos^{2} x} dx$ (b) Maximize $f(x, y) = 2x + 5y$ subject to the constraints: $2y - x \le 8$, $x - y \le 4$, $x \ge 0$, $y \ge 0$ 8. (a) Find an equation of a circle which passes through A(-3, 1) with radius 2 and center at $2x - 3y + 3 = 0$ 8. (a) Find an equation of a circle which passes through A(-3, 1) with radius 2 and center at $2x - 3y + 3 = 0$					
				(b) If a + b + c = 0 then prove = -	05
				9. (a) If $y = a \cos(\ln x) + b \sin(\ln x)$ prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$	05
9. (a) If $y = a \cos(\ln x) + b \sin(\ln x)$ $dx^2 - dx$ (b) Find the center, foci and vertices of hyperbola $9x^2 - y^2 - 36x - 6y + 18 = 0$					
318-XII121-20000					